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A non-linear theory for oscillations in a parallel flow 

By D. J. BENNEY 
Department of Mathematics, Massachusetts Institute of Technology 

(Received 21 April 1960 and in revised form 10 August 1960) 

Three-dimensional periodic oscillations in the shear flow region between two 
parallel streams are considered up to that second order of the oscillation ampli- 
tude. It is shown that, as an integral part of the oscillation, there is a mean second- 
ary flow in the nature of a longitudinal vortex. Despite the dissimilarity in the 
profile of the basic flows, several of the principal features of the calculated re- 
sults can be compared with those observed for the Blasius flow by Schubauer and 
Klebanoff & Tidstrom at the National Bureau of Standards. 

1. Introduction 
One of the most basic and challenging problems in fluid mechanics is to obtain 

an understanding of the various physical mechanisms involved during the tran- 
sition from laminar to turbulent flow. It could be called the missing link between 
the two regimes of fluid motion. This problem has been subject to a great deal 
of theoretical and experimental research, especially over the last decade, and 
considerable progress has been made to bridge the gap. However, there remains 
a vast amount of work still to be done before our knowledge of the transition 
phenomenon is complete. One may anticipate that the fkal answer will include 
many simultaneous effects. 

In  order to study the breakdown of laminar flow it is necessary to follow the 
growth of a disturbance superposed on the basic flow. If this disturbance is of 
very small amplitude, the equations can be linearized and one can develop the 
linear theory of hydrodynamic stability. This theory has been investigated in 
great detail and a survey of the subject is given in the monograph by Lin (1955). 
There can be no doubt that the initial trend of a small disturbance will be de- 
scribed adequately by the results of the linearized theory. Indeed there is now 
ample experimental evidence to support this fact (Schubauer & Skramstead 
1948). However, as the oscillation grows the non-linear terms in the equations 
become important, and must be included in the investigation. 

It has long been recognized that the inclusion of the non-linear terms adds 
two important new features to the problem. First, there is the effect of the Rey- 
nolds stresses in producing a redistribution of momentum and so a distortion 
of the original velocity profile, and secondly, the excitation of higher harmonics 
of the original oscillation. For finite-amplitude oscillations the modification of 
the basic flow through the action of the Reynolds stresses can be quite appre- 
ciable, and this will in turn modify the rate of transfer of energy from the mean 
flow to the disturbance, and so the rate of growth of the disturbance. Meksyn & 
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Stuart (1951) have calculated these modifications for the case of flow between 
parallel plates, and have given some calculations showing that the production of 
higher harmonics plays a less important role. Their results show that an increase 
in the amplitude of the oscillation produces a lower critical Reynolds number. 
More recently Stuart (1958, 1959) has given a somewhat simpler analysis based 
on energy methods and has obtained good agreement with experiment for the 
case of flow between rotating circular cylinders. Both these discussions consider 
only two-dimensional disturbances. The importance of the critical layer region 
as the ‘weak spot’ of instability has been stressed by Lin (1957). He has shown 
that for disturbances in a parallel flow all the harmonic components of the oscil- 
lation simultaneously become important around the critical layer, before the 
amplitude of the fundamental is large enough to cause any significant distortion 
of the mean flow, sufficiently large for experimental observation. 

The search for a suitable mechanism to describe the onset of turbulence has 
aroused much interest. Several plausible theories have been proposed and all 
possess some element of truth, although no single one appears to be the complete 
answer. Landau’s concept ( 1944) of successive instabilities seems intuitively 
reasonable, and enables one to picture the appearance of additional modes of 
oscillation corresponding to a sequence of critical Reynolds numbers. Gortler 
& Witting (1957) have proposed a theory, in line with Landau’s conjecture, 
based on the curvature of the streamlines causing a periodic vortex structure. 
There is experimental evidence to support the existence of secondary vortices, 
although there has not been any definite confirmation of the phase relationships 
involved. 

A horseshoe vortex structure as the fundamental element of transition has 
been proposed by Theodorson (1952), who also suggested that strictly two- 
dimensional disturbances are unimportant for causing transition. This latter 
conjecture is strongly supported by the recent experiments of Schubauer (1957) 
and Klebanoff & Tidstrom (1958), which we shall discuss briefly below. 

The presence of longitudinal vortices during transition has been reported 
by many experiments. These can be observed using dye and china-clay 
techniques. 

Mention must be made of the relative importance of two- and three-dimen- 
sional disturbances. This is a current issue that has attracted much attention. 
On the basis of linearized theory, Squire’s result (1933), namely, that three- 
dimensional disturbances are equivalent to two-dimensional ones at a lower 
Reynolds number is applicable, and so to estimate the onset of instability one 
need only consider two-dimensional disturbances. However, once the flow is 
above the critical Reynolds number, oblique waves also become unstable. There- 
fore it must be anticipated that the initially two-dimensional waves will become 
progressively three-dimensional as the Reynolds number is increased. This 
point has been emphasized in earlier work by Lin (1957). Indeed, since turbulence 
is an essentially three-dimensional phenomenon there must be a stage during 
development when the three-dimensional disturbances tend to dominate. Two- 
dimensional theory cannot be expected to suffice. This simple observation sug- 
gests the necessity of a theoretical investigation of three-dimensional effects. 
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Recent experiments also point strongly to the desirability of such an investiga- 
tion. Notable among the vast array of experiments probing the phenomena of 
transition, is the work of Schaubauer (1957) and Klebanoff & Tidstrom (1958) at 
the National Bureau of Standards. Most of their work has concerned boundary- 
layer transition on a flat plate. Perhaps the most startling and significant fact 
revealed by these experiments is the almost periodic spanwise variations of 
intensity with peaks and valleys occuping fixed positions and forming streets 
of high and low intensity. This periodic spanwise variation causes a warping of 
the velocity profile, the turbulence appearing to originate at these peaks and 
to spread into the valleys. More recently, further experimental work on this 
spanwise variation has been done and we shall have occasion to refer to it at a 
later stage. 

This brief introduction points to the multitude of effects observed and pre- 
dicted during transition. If it  serves no other purpose, at least it does pose the 
question as to whether there is any advantage in a theoretical approach which 
does not include all the non-linear terms. The complete solution of the non- 
linear equations should automatically include all of these effects. A consideration 
of all the non-linear terms has been advocated by von KArmgn, and it is in this 
spirit that we have undertaken the present investigation. 

Our task is to examine finite-amplitude disturbances, paying special attention 
to the three-dimensional oscillations. It is to be stressed that this will be done by 
setting up a systematic perturbation from the linear theory and that a purely 
formal mathematical approach is adopted, although much of the motivation 
for this work stems from recent experimental evidence. 

It is difficult to give a detailed explanation of the conclusions before the actual 
calculations have been made. Therefore at this stage only brief comment will 
be made on the interpretation of the results. A detailed description will be given 
later. 

The quantity found to be of prime importance is the mean secondary vorticity 
in the downstream direction. This vorticity has a periodic spanwise variation 
and produces a redistribution of momentum in planes perpendicular to the 
direction of flow. It is this momentum exchange that is responsible for an alter- 
nate steepening and flattening of the velocity profile, causing a warping or 
crumbling effect on the basic flow. Explicit formulas are obtained for the rate of 
growth of the second-order mean motion. Superposed on these secondary vor- 
tices there is the vorticity of the primary oscillation itself. This is periodic in 
the downstream direction, and so the two effects combined should produce 
alternately partial reinforcement and cancellation over each wavelength. 

The results obtained are applicable to a general parallel flow; but for illustra- 
tive purposes we have restricted the detailed calculations to the case of a shear 
profile. It is to be noted that, although our interests are chiefly with the three- 
dimensional nature of the motion, we do not discount two-dimensional effects. 
The results found by Meksyn & Stuart (1951) are in fact included in the analysis. 
It is believed, however, that in most situations the spanwise profile distortion 
will be the more important mechanism during transition. 

14-2 
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2. Mathematical formulation 
We now proceed to give the mathematical formulation on which the subsequent 

calculations will be based. The symbols p ,  q, o and R will be used to denote the 
fluid pressure, velocity, vorticity and Reynolds number, respectively. As 
mentioned in $1,  the calculation of the second-order vorticity will play a key 
role in this development. For this purpose it would suffice to  use the vorticity 

equation, namely, ao 1 
- - + ( q . V ) W  at = ( o . V ) q + - A W .  R (2.1) 

This will be referred to at the end of this section. But in order to calculate the 
second-order velocities it is convenient to proceed directly from the equations of 
motion, together with the continuity equation, that is, 

% + ( q . V ) q  = - V p + - A q ,  1 
at R 

v.q = 0, 

where we have supposed the fluid to  be incompressible and all quantities are 
expressed in dimensionless form. 

We may suppose that q, p and o are expanded as perturbation series of the 

(2.4) 
form 

( 2 . 5 )  

(2.6) 
where q(O) is the undisturbed basic flow and q(l) the primary oscillation, etc. 
The symbol a is used to denote a perturbation amplitude, and p(0) is the pressure 
distribution associated with the basic flow. 

Taking (x,y,x) as rectangular co-ordinates, and a given parallel basic flow 

propagating in the x-direction, having a possible x-variation of amplitude, which 
will for the moment remain unspecified. 

q = q(0) +a q (1) +a2q(2)+ ..., 
p = p'0) + ap(1) + aSp(2) + . . . , 
0 = o ( 0 )  + a d )  + a2w(2) + . . . , 

q(0' = { ,(O) (y), O , O > ,  we wish to trace the growth of a wave of small amplitude 

Successive perturbations are determined by sets of equations of the type 

v.q("' = 0 (n = 1, 3, ...). (2.8) 

We now proceed to derive the equations relevant for a determination of q 
and o up to terms O(a2), and in particular to find the second-order mean motion 
induced by the primary oscillation. 

Let 4 = (u, v, 4, (2.9) 

q(n)  = (UC"), vh) ,  W W ) ,  (2.10) 

and so (2.11) 
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(2.13) 

where 

(2.14) 

and where an asterisk is used to denote a complex conjugate. 
The equations governing the first-order motion are 

where 
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The notation used is such that superscripts refer to the order of the motion and 

The equations to determine the mean secondary flow are 
subscripts give the harmonic. 

a v p  aw;2) 

ay az 
-+- = 0. 

The second-order oscillation satisfies 
J 
1 

From the set (2.17), or from (2.1), it  is readily seen that the component ti2) of 
the mean second-order vorticity satisfies the equation 

(2.19) 
The momentum transfer associated with this longitudinal vorticity will be of 
prime importance in later discussions. 
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3. Distortion effects at high Reynolds numbers 
For flows at high Reynolds numbers the velocity field will conform to the 

inviscid equations as a first approximation, except within the critical layer region, 
where viscous corrections would be needed. A discussion of the subtleties 
involved in this limiting process can be found in Chapter 8 of Lin’s book (1 955). 
Indeed the inviscid limit is justifiable for the case of amplified disturbances and 
for neutral disturbances as a limiting case. If the complex wave velocity is 
c = c,.+ic,, then cr represents the wave speed, ci > 0 implies amplified, c, = 0 
neutral, and ci < 0 damped disturbances. It is convenient to introduce the 
amplitude functions for the primary oscillation; these are denoted by a circum- 
flex. Thus, 

and similarly for vil), wf), and pi1). 
In  studying the growth or decay of an oscillation we are interested in the case 

when cj  is close to zero. For the case of large Reynolds numbers we can find quite 
simple explicit formulas for the rates of growth of the second-order mean velo- 
city modifications. To this purpose it is convenient to rewrite equations (2.17). 
Dropping the viscous terms, we have 

where the form of the solution is so written that the limiting case ci --f 0 can readily 
be discussed. Clearly the arbitrary function of integration gives the initial value 
of ti2), which we may take as zero for the purpose at hand. The interpretation ofthe 
solution for t = 0 is to be taken more in the formal rather than the physical sense. 
The solution is supposed to be valid for a range oft ,  t, < t < tz.t 

t When the manuscript was shown to Dr J. T. Stuart and Mr J. Watson, they pointed 
out that the method they have developed for two-dimensional disturbances can be 
adopted here to modify the solution so as to make it valid for t -+ - CO. 
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components can easily be found. The results are 
In  using this result for E f J ,  the time dependence of the corresponding velocity 

where 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

and Pf)(y,  z ) ,  @)(y, z )  are given by (3.6) and (3.7). 
A knowledge of the primary oscillation is sufficient to determine PL2)(y, z )  and 

[A2)(y, z ) ,  thence the solution of a Poisson equation gives the second-order mean 
velocities. The equations also show that the second-order mean velocities grow 
exponentially in time, or in the case of neutral oscillations as powers oft;  for 

Therefore even for neutral disturbances the secondary flow will build up and 
eventually dominate. 

One of the most interesting features of this analysis is that a three-dimensional 
primary oscillation induces a mean second-order vorticity into the flow, having a 
component 6f)in the downstream direction. It is this mechanism which produces 
a spanwise momentum exchange and causes a warping of the original velocity 
profile. 

Thus far the analysis has been kept quite general and the equations would 
apply to a general type of parallel flow. To be more definite we now prescribe the 
primary oscillation. The initial oscillation must be expected to be two-dimen- 
sional. However, as mentioned earlier in 8 1, three-dimensional waves must 
appear at some stage during the development. We assume this to occur before 
the oscillation leaves the linear range. There is a strong experimental support 
for this conjecture. Schubauer and Klebanoff in their experiments report that 
transition never occurs without first being preceded by a strong warping of the 
wave. 

A more general infinitesimal oscillation can be compounded of a purely two- 
dimensional component together with a standing wave in the spanwise direction. 
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Of course, in the practical situation this latter component must be present to some 
degree, for undoubtedly there will always be some spanwise irregularity in the 
amplitude of the oscillation. The question then arises as to which component will 
be dominant as transition is approached. This will depend on which component 
has the higher amplification rate and so would require the details of the stability 
for the flow under consideration. 

We now revert to a less cumbersome notation and consider in detail the case 
of a sinusoidal spanwise variation of amplitude (wave-number p) associated with 
the three-dimensional wave. We write 

> (3.16) 

where the ratio plh is a measure of the relative importance of two- and three- 
dimensional oscillations, and will be taken to be real. There is then no loss of 
generality in taking this ratio to be positive. The reality of p/A corresponds to 
taking the two- and three-dimensional oscillations to be in phase. This corre- 
sponds to the situation in the experiments of Schubauer and Klebanoff. Also it 
appears to be the most likelyphysical situation if one regards the three-dimension- 
ality developing as a perturbation from the two-dimensional waves. t 

The two sets of equations governing the primary oscillations then become 

d6, 

dY 
iaa, + - +pi31 = 0, 

A d@l ia(u,-c)wl = --- 

and 

ia(u, - c) ull = + p$1, 

,. a t  
iaUl+- = 0, 

dY 

ia(u, - c )  o1 + 3 = - ia+l, 

dPl 
ia(u,-c)C = --. 

dY 

Also, the function &(y) is determined by 
dY 

t l  = dy +P%. 

(3.17) 

(3.18) 

(3.19) 

t If p /h  is complex the subsequent analysis suffers some slight modifications. These 
will not be considered in this paper. 



8b2)(y, z )  = h20a(y)  sin 2/32 +hp8b(y)  sin/3z +h28,(y)  +p2Qd(y), 

5h2'(Y7 2, = h2&,(Y) sin 2p2 + h t d b ( Y )  8in/3z + h2$(Y) +p2c&)7 

p62)(y, 2, = h2B,(y) 2p2 + Appb(y) cospz +hyc',(y) +p2pd(y), 
S^t'(y, 2 )  = h28a(y) CoS 2/32 + hP?b(y) cos /3z +h28,(y) +p28d(y), 

h duo 8, = - -Va- ,  
dY 

(3.20) ' 

1 
1 d2 la = - (- - + 2F2) (Old; + 0; 8,) - 2p d (a,@ + 8, a;), 
2 dy2 dY 

%+2/38, = 0, 
dY 

J 

I d  
B = -- - (a, 0; fafa,) -p(a,a; + @al), 2dy 

(3.21) 

The b flow is determined by 
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The c and d flows are independent of z and so cc = [a = 0. Also 
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doc - = dOa -- =-- d8, = %a = o. 
dY dY dY dY 

Hence, for the case of a fluid in the presence of a solid boundary or of a fluid 
extending to infinity, these four velocity components must be zero. 

Therefore the c flow is given by 

2, = 0, I 

I I d  p ,  = --- 2 dy (ale: +@el), 

c c  = 0, 
h vc = 0, 
8, = 0. 

Similarly the d flow is given by 

(3.23) 

(3.24) 

Od = 0, 
ad = 0. 

Thus these two-dimensional distortions contribute to uh2) through the gradient 

For the sake of completeness we list the equations for the analogous contribu- 
of the Reynolds stress, but do not contribute to vhz) or wf). 

tions ( e , f ,  g, h)  to the oscillatory secondary flow. We write 

The e flow is then determined by the equations 

(3.26) 

.! 

(3.26) 
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d.6 
2iaa + -f + / ? f a f  = 0) 

d d f  
dY 

dlsf ,  2ia(u0 - c) 5, - @fal  v1 = - -jx 

d y  d y  d y  
d?l7 2ia(uo - c) a, - pa 1 d 1=- - -  
dY ’ 

h 
Ujg = 0, 

dY 
gg = 0. 1 

2iaa,+-- do9 - - 0, 

(3.28) 

(3.29) 

I d5, 
2iatIh + - = 0)  

dY 
g h  = 0. I 

We shall now perform the calculations for a particular case. Such a calculation 
will shed considerable light on the mechanism involved. 

4. Application to the case of a shear flow between parallel streams 
In  this section detailed calculations are given for the case of the shear profile 

u o ( y )  = tanh y (cf. Esch 1957, and Drazin 1958). Such a shear flow can be readily 
approximated experimentally by mixing two parallel streams, and so the theo- 
retical predictions should be capable of direct confirmation. At the time of per- 
forming these calculations no experimental results for a shear flow, with special 
attention to spanwise variations, appear to be available. Such experiments 
would be highly desirable. 

From the set of equations (3.17)) governing the standing wave component of 
the primary oscillation, it can be shown by a simple elimination that 5, satisfies 
the equation 

(4 .1 )  
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For u,,(y) = tanhy, we have a point of inflexion at y = 0, and Curle (1956) 
has shown there is a neutral oscillation given by 

In fact one can set up a regular perturbation in c about this solution using the 
method of variation of constants. As our interest centres on the case of ci small, 
we shall be content with the first term of this perturbation. 

A complete solution of the linear system (3.17) corresponding to this neutral 
oscillation is 

6, = sechy; a2+P2 = 1; c = 0. (4.2) 

A i  uli = - [p2 cosech y - sech y tanh y], 
a 

Gli = sechy, 
dli = p cosech y, 
@li = iasechy. 

(4.3) 

For the two-dimensional component of the primary oscillation we take the 
known neutral solution of the set of equations? (3.18), namely, 

* 

oli = - i sech y tanh y, 
pli = sechy, 
PIi  = isechy. 

(4.4) 

These will be reliable solutions for fairly slow spanwise variations of amplitude 
and for ci small. Again the solutions could be improved by perturbation tech- 
niques; but for the range of interest the above approximations will be taken as 
adequate. As was mentioned in Q 3, in practice one part of the second-order mean 
flow (the b flow) may be of a quasi-steady nature, corresponding to slightly dif- 
ferent downstream wave-numbers for the two- and three-dimensional parts of 
the primary oscillations. 

I n  the solutions (4.3) and (4.4), the subscript i has been added to emphasize the 
fact that these solutions are purely inviscid solutions, and therefore will be re- 
liable solutions for the flow of a real fluid at high Reynolds number, provided we 
are not close to the critical layer (y = 0). It is important to note that the ampli- 
tude functions icli and dli exhibit singularities at y = 0, which would be absent 
in any real fluid. That is, when viscosity is included these poles would not be 
present. 

On the basis of a purely inviscid analysis, we obtain, from (3.21) to (3.24), 

g . = - -  16' [(1-P2)cosh2y-/32], 
a' sinh32y 

4,: = 0, 
(4.5) 

7 Strictly, this solution would have to be modified due to the difference in the value of 
a; but the logarithmic singularity is believed to be unimportant compared to the higher- 
order singularities present in the inviscid oscillation. 
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It is seen that the functions and Cbi have poles of order three at the critical 
layer. Thus the singularities in the primary flow give rise to more serious diffi- 
culties for the secondary flow. Clearly this singular behaviour can be corrected 
by using a viscous correction near y = 0. 

Corresponding to the neutral oscillation Oli = sech y, the equivalent two- 
dimensional component of this oscillation is given by ia.fili + pali = sech y tanh y. 
However, the cross-wave component is $+ = pali + iaali = +- (ip/a) sech3 y coth y, 
and has a pole at y = 0. The complete differential equation for $ is obtained by 
taking a suitable combination from the set (2.15). It is 

@-[iaRtanhy+l]$ = pRsech3y. 
dY2 

Formally putting R infinite, we have the inviscid solution 

$( = -- sech3 y coth y. 
ia (4.9) 

It is well known that the critical layer has a thickness of order (aR)3 and it is 
within this region that the solution $$ will be modified by a correction of the 
boundary-layer type. 

A formal method of dealing with a homogeneous second-order differential 
equation, involving a large parameter aR, whose coefficient has a turning point, 
has been given by Langer (1949). The extension to the non-homogeneous prob- 
lem is very simple. We sketch the method as it applies to the problem at hand. 

First consider the general solution $ of the homogeneous equation 

*-[iaRtanhy+l]P = 0. 
dY2 

(4.10) 

J(tanhy)dy = tanh-lJ(tanhy)-tan-lJ(tanhy), (4.11) 

Z(y, aR) = iY(y, ER) = i(aR)* (3T/2)*, (4.12) 

Let 

(4.13) 

where 

A straightforward substitution then shows that $l satisfies the equation 

(4.15) 

(4.16) 

Q-WQ/dy2 being regular and non-zero in a neighbourhood of y = 0. Equation 
(4.16) is considered as the approximating differential equation for (4.10) and 
correct to order (aR)+ we may write $ = g1. 

The solutions of equation (4.15) are the modified Hankel functions of order one- 
third. That is, in the usual notation, 

(4.17) 

(4.18) 
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As &(y) is a known function of y, we can write the general solution of equation 
(4.10) as $ = (4.19) 

where A,  and A ,  are arbitrary constants. 
Returning now to the non-homogeneous problem, the solution $(y) is required 

to approach the inviscid solution &(y) for (aR)fy large. An application of the 
method of variation of constants readily shows that this solution is 

$=-; sech3y cothyZL(Z), (4.20) 

where L(2)  is a Lommel function, and is the solution of the differential equation 
d2L/dZ2+ZL = 1, which behaves like 2-1 for 1.551 large. L(2)  can easily be 
checked to be expressible in the form 

201 

h 2 ( q  MC) f% - M Z )  SZ h,(5) 
, (4.21) 

iw -im 

W{h1(2), 'Z(')) 
L(2) = 

provided - gn < arg (2) < Qn. In  the above application arg (2) = +n. 
V{h1(Z), h,(Z)) denotes the Wronskian of the functions h,(Z) and h,(Z). In  the 
usual normalization for the Hankel functions, we have 

(4.22) 

The above method of approximate solution can be systematically extended to 
higher approximations by using perturbation series in (aR)-*. 

I n  dealing with the case of high Reynolds numbers we shall retain only the 
leading terms in aR for all quantities in the subsequent work. The viscous cor- 
rections, which apply for Y = O(l),  or y = O(aR)-f, remove the singularities 
obtained by the inviscid analysis. 

The Lommel function plays an important role in the problem and it is useful 
to list a few of its properties. We write 

L(2)  = L,( Y )  + iLi( Y), (4.23) 
where Y = (aR)fy. (4.24) 

From the differential equation we have 

a2L, 
__ + YL, = - 1, 

a2Li 
d Y2  

d 7  - YL, = 0. 

(4.25) 

(4.26) 

Also, using the result that [h1(2*)]* = h2(2), it can be shown, from (4.21), that 
L, is an even and Li an odd function of Y .  For Y large, 

2 2240 
L =--+-- ..., r y4 y10 

1 40 L. = --+-- .... 
Y Y7 

The graphs of L,( Y )  and Li( Y )  are shown in figure 1. 

(4.27) 

(4.28) 
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yields 
Dropping the subscripts i for the corrected solution, a little manipulation 

1.5 

(4.29) 

(4.30) 

i 
i 

f2 - -’- L,( Y )  -a: (p2 cosech y - sech y tanh y) YL,( Y), 
l -  a 

6, = sechy, 

C1 = - p cosech y YL,( Y) + iP(aR)* Lr( Y ) ,  

U, = - i sech y tanh y, 

V, = sechy. 

h 

I h 

- - 

- 

- 

Y=4 Y=5 
I 

- 

-1.0 - - 

The corresponding second-order quantities are 

where 

g =-- Is’ [(1-P2)cosh2y-p2]G(Y), 
a sinh32y 

P2(aR)3 dL, 
a dY’ 

p a = - -  

d 

[ b = - -  2p [ l 6  cosh 2y+p2 cosh4y -p2] H (  Y),] 
smh3 2y 

2p2(ccR)3 dL, 
a dY’ 

rh = 

where H (  Y) = - +Y4Lr. Also, 

Ec = 0, 

(4.31) 

(4.32) 

(4.33) 

(4.34) 
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For Y large 
16(70 - 19/?') G ( Y ) =  I-- -- 

H ( Y )  = 1--+ .... 

+ ... ) 
(1 - 2pz) YT 

1120 
Y6 

(4.35) 

(4.36) 

!O 
F I G ~ E  2. Mean secondary vorticity amplitude functions. 

I I 

FIGURE 3. Correction functions a( Y )  and H (  Y ) .  

The actual calculations have been performed for /? = 6,  aR = 125, which have 
been taken as typical of the behaviour of the functions. Both and &, are odd 
functions of y. Figure 2 shows these functions. Figure 3 shows the graphs of the 
correction functions G( Y )  and H (  Y ) .  

We now apply these results and calculate the mean secondary motion. 

15 Fluid Mech. 10 
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5. The mean secondary motion 
First we discuss the a flow contribution to the mean secondary motion. This 

has a spanwise period nip, and is induced by the three-dimensional standing 
wave part of the primary oscillation. From (3.21) we have 

where, from (4.31)) C U ( Y )  = C d Y )  G ( Y ) *  (5.3) 

We require the solution of (5.1), for y > 0, subject to the conditions B,(O)  = 0, 
and BJy) -+ 0 as y + co. For y < 0, 6,(y) and 8,(y) are defined as odd and even 
functions respectively. Thus 

6J-Y) = -3JY); U3J-Y) = GJY). (5.4) 

It is to be noted in passing that the solution of (5.1) with lu = 0 gives two- 
dimensional potential type motions. 

The solution of (5.1) satisfying the condition at infinity can be written down in 
explicit form by the method of variation of constants. We have 

8,( y) = A ec2pU + (5.6) 

where both integrals are clearly convergent. For S,(O) = 0,  A is determined from 

and so 

A = /ow &(t) sinh 2pt dt, 

w,(o) = - fa(t)e-2pldt. IOrn 
Using this value for A ,  we can rewrite 6,(y) and 8,(y) in an alternative form, 
convenient for small values of y, namely, 

&(t) sinh 2p(y - t )  dt, (5.9) 

8,(y) = - &,(t)cosh2p(y-t)dt .  (5.10) 

Approximate values for the constants A and 8,(0) can be obtained in the 
following way. tai(t) can be expanded as a Laurent series about t = 0 of the form 

a, a1 

t3  t 
l&) = - +-+ ... ) 

a, = - 2p( 1 - 2py. 
where, for the case at hand, 

(5.11) 

(5.12) 
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Putting T = (aR)*t, and Y = (aR)* y, we have from equations (5.7), (5.8) 

and 

A = - 4p2( 1 - 2p2) (aB)*/om G ( T )  d T  + O(aR)-*, 

a,(()) = 2p( 1 - 2p2) (aR)jlom& G ( T )  d T  + O(aR)*. 

(5.13) 

(5.14) 

On using the value for G ( T )  from equation (4.31) we find, after some simplifica- 
tion, 

A = 4(aR)4 p4/0m (L," + L,Z) d T  + O(ccR)-f, (5.15) 

&,(O) = - (aR)3 p ZP2L,"(O) --& (0) + O(ccR)*. (5.16) 
dL .  1 

So for R large, A > 0, and a,(O) < 0. 
Also from equation (5.9), using the same transformations, we have 

(5.17) 

and so for Y large, 

z',(y) -+ - 4p2( 1 - 2p2) (aR)* - G ( T )  dT. 
Jo* A (5.18) 

Thus O,(y) tends to a constant value of order (aR)* as we approach the outer 
edge of the critical layer. On comparing (5.13) and (5.18), it  is seen that it is 
this term that induces the external potential motion A e-Zpu. 

The preceding analysis shows very clearly the importance of the critical layer. 
Although viscous forces are negligible outside the small region y = O(aR)-), 
we see that they are indeed responsible for inducing a potential component to 
the secondary motion, which is dominant far away from the critical layer. This 
two-dimensional secondary flow, induced by the purely three-dimensional part of 
the original oscillation, may be described as being due to a source distribution at  
the critical layer of strength g ( z )  = ( A / n )  cos 2p.2 per unit length. This source 
distribution is of O{a2h2(aR)*), and determines the direction of the circulation for 
the a motion at infinity. 

In  figure 4 we show the graphs of O,(y), &,(y), B,(y), and 5,(y). 
By the same method we can discuss the b flow contribution to the mean second- 

ary motion. This has a spanwise period 2nfP and is induced by the non-linear 
interaction of the two- and three-dimensional parts of the oscillation. From 
(3.22), we have 

- P2$b = - p c b ,  (5.19) 
d26b 

(5.20) 

(5.21) 
15-2 
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These equations are of the same form as (5.1), (5.2), (5.3), with a, G, and 2p, 
replaced by b, H ,  and p, respectively. 

Hence we find, for y > 0, 

&(t) sinhP(y - t )  dt, (5.22) 

(5.24) 

(5.25) 

&,(y) = Be-flf'+J'&(t) coshP(y-t)dt. (5.33) 
m 

As before, B = IOw &(t) sinhpt dt, 

FIGURE 4. Amplitude functions for the a. flow. 

On using this value for B, the expressions for O,(y) and 8,(y) can be rewritten 
in the alternative form 

&(t)sinhP(y-t) dt, (5.26) 

8,(y) = - &(t)coshP(y-t)dt. (5.27) 

Near t = 0, (5.28) 

and so (5.29) 

= 4P(aR)% H ( T )  d T  + O(aR)). (5.30) 

On using the fact that H ( T )  = - 4T4L2(T), we find 

B = O(aR)-i, (5.31) 

(5.32) 
dL.(O) 

&,(O) = 2p(aR)Q -&- + O(aR)i. 



Non-linear oscillations in a parallel flow 229 

Thus the interaction flow, or b flow, produces a potential component 
O(a2h,u(aR)-~}, in contrast to the a flow. The same strong spanwise momentum 
exchange is present near the critical layer. Figure 5 shows the graphs of Ob(y), 
WY), P,(Y) and MY). 

Y =  

y =  

Y =  

Y =  

y = -  

y = -  

FIGURE 5. Amplitude functions for the b flow. 

, I I I I 
3 l -  I 

pz = *7T pz = 277 pz = 0 pz = *7T pz = 7T 

FIGURE 6. Streamline pattern for secondary motion, p / h  1. 

The c flow part of the mean secondary flow is a purely two-dimensional dis- 
tortion due, however, to the three-dimensionality of the original oscillation. 
The only non-zero second-order term is B,(y) = B,(y) , relating to the downstream 
velocity component. This tends to produce a defect in %-momentum close to the 
critical layer at all points across the profile, and a very slight excess at the outer 
edge of the critical layer. The effect is confined to the region, y = O(aB)-). 
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To the order of the approximation used in the present analysis, the d flow, 
due to the two-dimensional oscillation, does not affect the mean flow. 

In order to interpret these results, it is desirable to plot the projections, on 
the (y, 2)-plane, of the streamlines for the entire second-order mean motion. 
These will be obtained by solving the differential equation 

Y = 3 0 ’  

y = 2  

y = l  

y = o  

y = - 1  

y = - 2  

I 
y = - 3  

(5.33) 

pz = 0 pz = 477 pz = 77 pz = $71. pz = 277 

FIGURE 7. Streamline pattern for secondary motion, p /A  = 2. 

I I 

y = 3 -  

y = - 3 -  

pz = 0 pz = 477 pz = 77 pz = %K pz = 277 

FIauRE 8. Streamline pattern for secondary motion, ,u/h = 1. 
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that is, from 

(5.34) 
dz 

A%, sin 2pz + A,&, sin i3z ’ 
- dY - 

FO, cos 2p.z + ~ p 0 ,  cos pz 
and so, on integration, the streamlines are given by 

AP (5.35) A2 
- 0, sin 2Pz + - 0b sin pz = const. 
2P P 

Figures 6 ,7 ,8 ,9 ,10  show these streamline patterns for various ratios ofp/A. These 
streamlines have been plotted using equal increments of the stream-function 

Y =  

Y =  

Y =  

Y =  

y = -  

y = -  

y = -  

pz = 0 pz = +7T pz = 77 pz = 877 pz = 277 

FIGURE 9. Streamline pattern for secondary motion, p / h  = 4. 

I 

y = 3 1  y = 2  

y = l  

y = o  

y=- -1  

I 

y = - 2  

y = - 3  

pz = 0 pz = &r pz =77 pz = s77 pz = 271 

FIGURE 10. Streamline pattern for secondary motion, p / h  = 0. 



232 D.  J .  Benney 

from y = 0, and show clearly the steady longitudinal vortex structure of the 
secondary flow. 

This completes the formal mathematical calculations for the mean flow. It 
remains to interpret these results and to discuss the physical mechanisms in- 
volved. To this purpose it is necessary to make a few simple observations on the 
primary oscillation. 

6. The primary oscillation 
It is to be anticipated that the effect of the secondary motion will be diminished 

or intensified by the downstream periodicity of the primary oscillation. The 
longitudinal vorticity associated with the three-dimensionality of the oscillation 

(ii) a x=+n y= 1 

y=-1 y=-1 

(iii) 4 x = n  

i -4 -2 

y=  -1 

-y= 1 (iv)ax=+n y=l)- 

FIGURE 11. Amplitude of w(I) at spanwise position, bz = =&. 

is of particular interest. Therefore we list the relevant fluctuations. They are, 
putting c = 0,  

Lr( Y) cos ax 

(6.1) 

(6.2) 

1 1 + - (/Iz cosech y - sech y tanh y) YL,( Y) sin ax cos Pz 

+ 2,u[sech y tanh y sin ax], 
a 

dl) = 2h[sech y cos ax] cos /3z + 2,u[sech y cos ax], 
w(I) = Zh[-Pccosechy YLi( Y)cosax-P(~~R)~L,(Y)sinax]sin~z, (6.3) 

cos CIX 
dL,(Y) - /3 cosech2 y sech y Y 2  ___ 

dY 

dLT(y)sinax sinpz. (6.4) - /3(aR)3 ___ 1 dY 

It is seen, therefore, that w(l) and tc1) have spanwise maxima where /3z is an odd 
multiple of Q;.. The distributions for w(l) and t(l), at the position /3z = in, are shown 
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in figures 11 and 12, for different downstream positions. It will be noticed that 
when ax = in, the oscillation will lend support to the vortex distribution of the 
b flow. This corresponds to the convex part of the streamline. When ax = 37rr/3 
the vorticity due-to the oscillation tends to cancel that of the b flow. We shall 
return to this point in the next section. 

“ : a x = :  3-; 
-20 -10 

1 

10 20 

y =-1 

(iv+ 

10 20 

-20 -10 

y =-I 

FIGURE 12. Amplitude of <(l) at spanwise position, /5’z = &T. 

7. Physical interpretation of the results 
In  previous sections calculations have been made for the second-order velo- 

cities induced by oscillations of finite amplitude. It is clear that this mechanism 
in which the secondary vorticity produces a spanwise redistribution of momen- 
tum will apply to non-linear oscillations in any parallel flow, although the phase 
relationships may differ from case to case. Therefore, in this discussion, we shall 
restrict ourselves to an interpretation in the case of the profile uo(y) = tanhy. 
Also, in this report we shall neglect the effect of the second and higher harmonics. 

Initially one must expect that the oscillation will be mainly two-dimensional, 
that is p / h  1, and so the steady secondary flow will be essentially the b flow. 
This b flow induces a steady cellular vortex structure on the motion as indicated 
in figure 6. Momentum is extracted from the viscous region at spanwise positions 
Pz  = 0, f 2n, f 4n, . . ., where the amplitude of the dl) oscillation is a maximum, 
and fed back into this region a t  intermediate spanwise positions Pz = +.n, 
& 3n, . . . . This large-scale exchange process produces an alternate defect and 
excess of x-momentum at these points respectively. In  turn it is responsible for a 
spanwise alternate thinning and bulging of the original velocity profile. From 
figure 5, it  is seen that this effect should be most pronounced at the outer edges 
of the critical layer, the profile gradually becoming more and more warped. 

This picture is somewhat modified by the primary oscillation itself. The oscil- 
lation is periodic in x and has the same spanwise period as that of the b flow. The 
vorticity distribution of the oscillation is an even or odd function of y according 
to whether ax is an even or odd multiple of ii.. Clearly from figures 11 and 13 
this vortex system will tend to reinforce and cancel that of the secondary b 
flow once each downstream wavelength. This vortex intensification will take 
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place when ax = ijn, Pn, &T, . . . , corresponding to longitudinal vortices having 
their centres at  spanwise positions /3z = Qn, $n, . . . . At such points the streamline 
is convex, the maximum cancellation occurring where the streamline is concave, 
contrary to the Gortler & Witting model (1957). This does not mean that the 
Gortler & Witting mechanism is not present, but it does show that there are other 
effects beyond those indicated by their theory. Existing experimental evidence 
lends support to the idea of vortex intensification at  the convex part of the 
streamline, as predicted by the present theory. 

If the three-dimensionality of the oscillation increases, then the a flow con- 
tribution to the secondary motion will become more prominent. The extreme 
case for an entirely standing wave oscillation is shown in figure 10. This a flow 
also induces a cellular vortex structure on the motion, the spanwise period being 
nI/3. The vorticity is again an odd function of y.  However, this motion is unlikely 
to be observed without a considerable b flow contribution being superposed. 

We now trace growth of the secondary motion as the three-dimensionality of 
the oscillation becomes stronger. The secondary flow goes through the stages 
sketched in figures 6 to 10. The original vortices move closer towards the velocity 
defect regions, and much weaker vortices begin to appear outside the critical 
layer near the excess positions. The centres of these latter vortices gradually 
move down closer to the critical layer as the motion becomes more three- 
dimensional. It is to be recalled that the a flow has a dominant potential com- 
ponent O{a2h2(aR)f). For the stronger vortices the same periodic intensification 
will be present at the downstream stations ax = Qn, gn, . . . ; but in the case of the 
weaker newly formed vortices, which may be difficult to observe, the reinforce- 
ment will be less marked. However, any such detectable intensification should 
now take place at ax = $77, $n, . . . . 

This longitudinal vortex structure and the associated mechanism of momentum 
transfer produces spanwise alternate excesses and defects in the x-momentum. 
The directions of the a and b vortices is such as to accentuate the spanwise points 
of velocity defect, which should therefore be quite sharply defined at pz = 0, 
- + 2n, -t 477, .... The c flow adds a two-dimensional defect to the profile at  all 
spanwise positions. Although the thinning of the profile should be quite pro- 
nounced, the bulging at the intermediate positions /3z = & m, * 377, . . . will be 
more evenly distributed about these points. I n  fact, as the wave becomes more 
warped, these regions of excess may show a small defect region at their centres. 
These conclusions can readily be seen by referring to the streamline patterns. 

8. Concluding remarks 
In  this paper we have used formal mathematical methods to investigate finite- 

amplitude oscillations during the breakdown of laminar flow. It is to be empha- 
sized that while we do not discount ordinary two-dimensional distortions, it is 
felt that in many situations the formation of secondary vortices and the associ- 
ated crumbling of the profile will be more strongly evident. Certainly this 
mechanism must be present to some degree during transition. In  recent experi- 
mental literature there is repeated reference to the formation of this vortex 
structure. 
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Clearly the theory presented here could be improved in accuracy by a slightly 
more sophisticated approach. For instance, no account has been taken of the 
small differences in the values of a, acr, and aci for the two- and three-dimensional 
oscillations. The difference in amplification rates could have been included very 
easily and is, in any case, compensated for by the disposable ratio plh. The dif- 
ferences in a and ac7 have been neglected on the grounds that their effects over 
the few wavelengths of practical interest would be small. Indeed: one might 
anticipate that in the non-linear range a synchronization phenomenon would 
occur, similar to that, encountered in the study of periodic solutions of ordinary 
differential equations. Another point to be mentioned is that the principal 
three-dimensional mean flow distortion (the b flow) is linear in the three- 
dimensional component of the primary oscillation, and so for the purposes of 
calculation any value of /3 will yield a typical secondary-flow structure. 

Doubtless the most important practical situation is that of boundary-layer 
transition. Here the Reynolds number depends on the downstream position (as 
opposed to the case of channel flow), and experimentally the waves develop 
as a space amplification rather than as a time amplification. Thus a more realistic 
approach to this problem would be to follow a wave of given frequency (ac real), 
and to examine its amplification with 2 (a complex). This would require some 
modifications of the present theory. In  the non-linear problem one would then 
have a second-order mean flow growing in x rather than in t .  

During completion of this work Dr G. B. Schubauer and Mr P. S. Klebanoff, 
in a private communication, have very kindly forwarded the results of some 
recent unpublished experimental work on a Blasius profile, performed at the 
National Bureau of Standards. Despite the vast difference between the case of 
shear-flow and boundary-layer instability, there is a very distinct agreement with 
the present theory. A theoretical study of the non-linear effects during boundary- 
layer instability is planned in the near future. This will enable a detailed com- 
parison of theory and experiment to be made. 

The author wishes to express his gratitude to Professor C. C. Lin of the Massa- 
chusetts Institute of Technology for his help and encouragement during this 
investigation. The general results in the first few sections of this paper were 
obtained jointly with Professor Lin, and have been summarized elsewhere (Ben- 
ney & Lin 1960). My thanks also to Dr G. B. Schubauer and Mr P. S. Klebanoff 
of the National Bureau of Standards for several pleasant and informative dis- 
cussions, and to Dr J. T. Stuart and Mr J. Watson of the National Physical 
Laboratory for reading the manuscript. This work was supported in part by the 
Office of Naval Research. 
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